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Abstract--Deflagration waves propagating through porous energetic materials are known to be subject 
to intrinsic diffusional/thermal instabilities that are associated with the onset of various oscillatory modes 
of combustion. A few theoretical analyses to explain these combustion phenomena have been published 
in the literature, and the present contribution extends these results. In particular, we reconsider our 
previous asymptotic analysis of non-steady, non-planar deflagration, which postulated a constant-density 
gas phase, to take into account the effects of quasi-steady thermal expansion of an ideal gas. With relative 
motion between gaseous and condensed phases included, a time-dependent, multidimensional asymptotic 
model is derived through the application of activation-energy asymptotics. Analyzing this model, an 
explicit solution corresponding to steady, planar deflagration is obtained as a special case, and a dispersion 
relation is derived describing its linear stability. In the plane defined by the non-dimensional activation 
energy and the disturbance wavenumber, a pulsating neutral stability boundary is calculated, beyond 
which non-steady, non-planar solutions are expected. The effects of porosity and gas-phase thermal 
expansion are shown to be generally destabilizing, suggesting that degraded propellants, which exhibit 
greater porosity than the pristine material, may be more readily subject to combustion instability and 
non-steady deflagration. 
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1. I N T R O D U C T I O N  

There is increasing concern about the safety and surety of aging or thermally damaged propellants, 
explosives and pyrotechnic materials. This concern, in turn, has fostered an important and rapidly 
growing  area  o f  research focused on the combus t ion  behav ior  o f  po rous  energetic solids. Interests  
include de te rmin ing  the igni t ion character is t ics  o f  such mate r ia l s  and  the condi t ions  under  which 
low-speed  def lagra t ions  p r o p a g a t i n g  in the mate r ia l s  can become uns table  and  undergo  t rans i t ion  
to de tona t ion .  The  present  con t r ibu t ion  addresses  the ques t ion  o f  def lagra t ion  stabi l i ty  for one 
pa r t i cu l a r  mode l  in which an ini t ial ly po rous  solid melts  and  subsequent ly  undergoes  a one-s tep  
Ar rhen ius  combus t i on  process  in the l iquid phase,  p roduc ing  hea t  and  gaseous  reac t ion  products .  
This  mode l  is des igned to p rov ide  a simplif ied descr ip t ion  o f  the combus t ion  o f  a class o f  energetic 
mate r ia l s  tha t  includes some types o f  n i t r amine  propel lan ts ,  such as H M X ,  tha t  are observed  to 
exhibi t  cons iderab le  bubb l ing  in an  exothermic  foam region dur ing  def lagrat ion.  In  fact, mul t iphase  
c o m b u s t i o n  layers  occur  at  the surfaces o f  mos t  burn ing  propel lan ts ,  even those tha t  ini t ial ly are 
pure ly  h o m o g e n e o u s  solids. Thus,  it is c lear  that ,  in such appl ica t ions ,  two-phase- f low effects p lay  
an  i m p o r t a n t  role even for  n o n - p o r o u s  mater ia ls .  However ,  a non-zero  initial  poros i ty ,  whether  
present  by  design o r  as a consequence  o f  p r io r  exposure  to a b n o r m a l  thermal  envi ronments ,  can 
c lear ly  enhance  the impor t ance  o f  two-phase  flow with respect  to def lagra t ion  and  its s tabi l i ty,  
affecting no t  only  fundamen ta l  t h e r m o d y n a m i c  character is t ics  such as the bu rned  tempera ture ,  but  
also resul t ing in a more  p r o n o u n c e d  two-phase  effect in the surface layer. This s tudy takes  a fur ther  
step towards  quant i fy ing  the influences o f  mul t iphase  flow on the s tabi l i ty  o f  the combus t ion  
process.  

The  l i te ra ture  conta ins  a n u m b e r  o f  general  fo rmula t ions  for  mul t iphase  flow in the combus t ion  
o f  energet ic  mate r ia l s  (cf. Baer  & N u n z i a t o  1986). Simpli fying a p p r o x i m a t i o n s  m a y  then be 
in t roduced  into these fo rmula t ions  in o rde r  to descr ibe pa r t i cu la r  combus t ion  processes o f  interest .  
Ear ly  research on mul t iphase  def lagra t ion  tended to t rea t  two-phase  flow as a one-phase  process  
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through an appropriate averaging over the multiphase medium. Our previous works (Margolis 
et  al. 1987; Li et  al. 1990; Margolis & Williams 1990, 1995a, b) have shown that this type of 
approximation often conceals important effects of two-phase flow, such as influences of velocity 
and temperature differences between the two phases on the propagation velocity of the deflagration 
and its stability. The present paper, which is also based on a model that takes into account the 
different properties and velocities of the different phases, continues our investigation of the effects 
of two-phase flow on various aspects of propellant deflagration. 

The simplified chemistry, consisting of a one-step exothermic process in which condensed (liquid) 
reactants are converted into gaseous products, of the present work is the same as that of all of  
our previous studies except one (Li et  al. 1990), which added a reversible vaporization step and 
an irreversible gas-phase exothermic step to provide a better approximation for nitramine 
deflagration. Indeed, there are low-pressure situations in which the gas-phase chemistry occurs at 
locations sufficiently remote from the regressing surface that it can be neglected. However, even 
when this is not true, analyses that retain only the exothermic gasification process are necessary 
first steps in understanding complex phenomena such as stability behavior in multiphase reactive 
media. Our initial studies (Margolis et  al. 1987; Li et  al. 1990; Margolis & Williams 1990) also 
limited their considerations to non-porous materials by placing the solid liquid interface at a 
sufficiently remote location ahead of the deflagration front. Our first treatment of effects associated 
with initial porosity (Margolis & Williams 1995a), which was restricted to steady, planar 
deflagration, demonstrated several important modifications relative to the non-porous case. For 
example, it was shown that the final burned temperature decreases as the porosity increases because 
of the energy required to heat the gas contained in the pores, thereby substantially reducing the 
burning rate, which depends exponentially on the final burned temperature. Our latest publication 
on the subject (Margolis & Williams 1995b), which differs from the present work in that the gas 
density was assumed constant, adopted the same generic model but generalized the analysis t o  
address the non-steady, non-planar stability of the steady, planar solution under the same 
assumption of constant gas density. That analysis was thus similar to our previous analysis of the 
non-porous case (Margolis & Williams 1990), which is now seen to correspond to the non-porous 
limit of the more recent study. The present work, in contrast, retains variable-density effects 
associated with the thermal expansion of the gas. To facilitate the analysis, a quasi-steady 
approximation is applied to the gas phase and, analogous to our earlier work on deflagration 
stability described above, the method of activation-energy asymptotics is employed to derive a 
non-steady, multidimensional asymptotic model, a basic solution corresponding to steady, planar 
deflagration, and a dispersion relation governing its linear stability. 

2. DISCUSSION AND F O R M U L A T I O N  

Figure 1 is a schematic diagram of the propagating deflagration wave, which moves generally 
to the left into the porous unburned solid that has a gas-phase volume fraction Es. The structure 
of  the combustion wave, which, we emphasize, may propagate in a non-steady and non-planar 
fashion is as follows. Proceeding from left to right, there exists a solid-gas preheat region, a melting 
front at which the solid constituent becomes liquid upon reaching its melting temperature Tm and 
a further region of liquid-gas heating that completes region (1) in figure 1. This is followed by a 
relatively thin exothermic reaction zone, identified as region (2) in figure 1, where the liquid reacts 
to form gaseous products. This in turn is followed by the burnt-gas region (3), where the volume 
fraction E of the gas is unity. In the limit that the activation energy of reaction is large, the reaction 
zone (2) asymptotically becomes a propagating surface similar to, but displaced from, the melting 
surface. In the laboratory-fixed spatial coordinate system (Y~, 22,23) illustrated in figure 1, the 
porous solid extends to -?3 = - ~ ,  where conditions are denoted by the subscript u, and the gas 
extends to 23 = + ~ ,  where conditions are identified by the subscript b. The deflagration generally 
propagates in the -23  direction, although, as noted above, the wave motion is allowed to be both 
non-steady and non-planar. Here and in what follows, a tilde over a symbol (e.g. ~3) will denote 
a dimensional quantity, and the subscripts s, L and G will denote solid, liquid and gas-phase 
quantities, respectively. A continuum formulation, in which appropriate volume fractions multiply 
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the physical variables associated with each phase, will be used to model the physical problem just 
described. 

The formulation of  the problem may be presented either by beginning with a very general 
mathematical description, and then introducing many simplifying assumptions, or by stating 
approximations physically and then immediately writing down the mathematical formulation to 
be used. The first of  these two approaches has the advantage of exhibiting explicitly many of the 
approximations that are adopted, but has the disadvantage of  being lengthy and tending to divert 
attention to relatively unimportant side issues. Because of this disadvantage, and because the initial 
formulation has been formally presented in our previous work (Margolis & Williams 1995a, b), we 
have adhered more closely to the second approach in the present study. Specifically, the formulation 
for planar problems in which the solutions do not depend on the transverse co-ordinates ~2 and 
x3 was given in Margolis & Williams (1995a), and generalized in Margolis & Williams (1995b) to 
weakly non-planar deflagrations in which the product of  the amplitude and the transverse 
wavenumber of  the non-planar disturbance is small. This is an appropriate regime for analyzing 
the stability of  planar solutions of  the system, and permits considerable simplification in the 
representation of  the velocity field. In particular, the transverse velocity components in the 21- and 
~2-directions are small compared with the component in the ~3-direction, and can be neglected to 
the order of approximation needed here. That is, the velocity fi in each phase may be approximated 
b y  UL.G = (0,  0,  /~L.G(.~I, -~2, 3~3, ~)), where the velocity of  the solid phase is assumed to be zero. A 
considerable number of simplifications then occur in all of  the conservation equations, and 
ultimately the primary differences that remain between the formulations for the planar and 
non-planar problems are the presence in the latter of  additional terms involving transverse 
derivatives that arise from transverse diffusion. It is noteworthy that non-planar stability can be 
addressed through a formulation that resembles so closely the formulation for time-dependent, 
planar combustion. 

In addition to the velocities, the formulations in our aforementioned previous studies allow for 
the temperatures of  the gaseous and condensed phases to differ from one another as well, as they 
must when convective enthalpy transport by the gas phase relative to the condensed phase is 
important (cf. Aldushin 1990; Aldushin & Zeinenko 1991). They also account, in an approximate 
way, for influences and of viscous and surface-tension-gradient forces on velocities, following an 
earlier analysis (Margolis et al. 1987) of  steady, planar deflagration in non-porous propellants. 
These effects have been included in a stability analysis for such propellants assuming constant 
gas-phase density (Margolis & Williams 1990), where it was found that surface-tension-gradient 

. . I  Melting front )l 
X2 m X3 
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Figure 1.q Non-steady defiagration of a porous energetic material with two-phase flow in both the 
solid-gas and liquid-gas regions, with combustion occurring in the latter. The lower figure is a blow-up 
of the multiphase, multidimensional "flame" ~tructure, consisting minimally of (1) a preheat zone 
containing a time-dependent, non-planar melting front, specified functionally by 23 = fire(21,22, ~, across 
which the porous solid changes into a bubbly liquid, or foam, and (2) a thin liquid-gas reaction zone. 
Additional gas-phase reactions, suppressed in the present work, may occur in a secondary gas-flame region 

(3) downstream from the primary two-phase reaction zone (2). 
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forces and resistance to heat transmission are both destabilizing. Qualitatively, the same result may 
be expected for the porous propellants considered here. For simplicity, however, and because of 
uncertainties in values of surface tension and interphase heat-transfer coefficients, we neglected 
these effects in our final analysis of the model given in Margolis & Williams (1995b). For the sake 
of economy, we shall exclude these effects at the outset in the present study, referring the reader 
to that earlier publication for the more general formulation. 

In writing the resulting conservation equations for the single-temperature limit described above, 
the symbols fi, ~ and Tare used for density, the 23-component of velocity and time, respectively, 
with appropriate subscripts identifying each phase. Denoting the location of the melting surface 
by 23 = 2m(£1,22, t), we have, in the laboratory-fixed co-ordinate system and with the approxi- 
mations described above, 

~ = 0 ,  ~L-- ~ - - 1  , [1] 

where/~s and PL are both assumed to be known constants. These results, coupled with the small 
Mach-number assumption mentioned below, make it unnecessary to consider momentum conser- 
vation any further (Margolis et al. 1987) and thus enable us to focus attention on mass and energy 
conservation, which thus dominate the process analyzed here. In particular, denoting the gas-phase 
volume fraction by ~, overall mass conservation can be written as 

and 

+ 8t 023 (~° fi° ) = 0, -?3 < 2m, [2] 

In addition, conservation of mass of the liquid phase is expressed as 

[(1 - ~)fiL] + ~ [(1 -- E)fiL~L] = --'~fiL(l -- E )exp ( -E /R°T) ,  ~'~3 > Xm, [4] 

where 2~ denotes temperature, E is the overall activation energy, R ° is the universal gas constant, 
and A is the pre-exponential reciprocal-time factor (assumed constant here) for the rate of the 
overall exothermic chemical reaction by which the liquid is transformed to gaseous products. The 
statement of mass conservation for the gas in the region 23 > Xm is the difference between [3] and 
[4]. We note that in the solid-gas region 23 < Xm, condensed continuity is identically satisfied since 
fis = fi~ = 0, and assuming initially constant porosity ~s for the unburned material, E = Es throughout 
this region. As a result, the overall continuity equation [2] in the solid-gas region collapses to the 
continuity equation for the gas phase alone. In the liquid-gas region 23 > 2m, E varies according 
to [4] and approaches unity as combustion goes to completion. As discussed in Margolis et al. 
(1987), the evaluation of the Arrhenius reaction rate is based on conditions (e.g. temperature) in 
the liquid phase, and may be interpreted as a contribution to a constitutive relation for that 
medium. 

The equation for overall energy conservation can be expressed as 

- Es) + eoEs] } +  oCs 

[51 

and 

~~[/~L(1 -- E ) (~  + EL T) + ~GEocT] + ~ (¢5L aL (1 -- E)(Q + EL T) 4- t~GeO t~C ET] 
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in the solid-gas and liquid-gas regions, respectively. Here, E, )~ and p denote specific heats at 
constant pressure (assumed constant and, for condensed phases, equal to the corresponding specific 
heats at constant volume), thermal conductivities (also later treated as constants) and pressure, 
respectively. The heat released per unit mass in the chemical reaction is denoted by Q, which serves 
to define the chemical enthalpy difference between the gaseous and liquid phases, and which varies 
with T unless ?L  = CG" Conservation of energy for the condensed phases can also be written down, 
but are not needed when the temperatures are the same in each co-existing phase. Equations for 
the gas phase may then be obtained by subtracting the appropriate condensed-phase equation from 
the corresponding overall energy equation. Derivations of alternative forms of these conservation 
equations for the more general two-temperature formulation is contained in our previous work 
(Margolis & Williams 1995a, b), where it is also shown how [5] and [6] are obtained as the 
appropriate limit in the limit of large rates of interphase heat transfer. Additional discussions are 
also given regarding the roles and origins of various terms. In particular, we remark that the term 
involving/~G, which, for small Mach numbers, depends at most on ~, arises from the contributions 
of surface and volume work performed by the gas to the rate of change in its internal energy. 

The (ideal) equation of state for the gas to be used in the present work is 

Pc = fig R° T~ We, [7] 

where I~ G denotes the molecular weight of the gas. As indicated above, the Mach number is 
assumed to be small, under which condition Pc is independent of the spatial coordinates (Margolis 
& Williams 1995a, b) and its partial derivative with respect to }'becomes a total derivative. Equation 
[7] thus takes into account compressibility of the gas, and since Ps and PL are constants, this 
completes the set of equations, subject to boundary and interface conditions prescribed below, 
needed to describe a deflagration in the porous material. Boundary conditions appropriate for an 
unconfined deflagration are given by 

E=Es for ) ? 3 < ) ? r a ;  /~G----~0, T-~Tu as ) ? ~ - o o ,  [8] 
_..k ~ o E~I ,  Pc Pc, T~Tb  as )?3-~+ov, [9] 

where the final burned temperature Tb is determined from Q and thermal properties of the system, 
and the boundary condition on pressure implies that fig = P~ everywhere. For the approximations 
adopted here, the interface conditions across the melting surface collapse to continuity of c, 5~ and 

(Margolis & Williams 1995b), where 

and the overall interface energy balance 

Gm{[~L(1 -- Es) -'1- ,~GEs]fim" ~'TI-~, = ~m+ -- [2~(1 -- E~) + '~G6slfim" VTI~=~., } 

0t)l m} , " ,  

where the unit normal tim has )?,-, )?2- and )?~-components -G2~ ~(02~/0)?!), -G~'(O)?m/0)?2) and 
G2~, respectively, the geometric factor Gm being given by 

Gm= x/1 + (0)?m/0)?l)2 ..]._ (0)?m/0)72)2 , [121 

The parameter ~ is the heat of melting of the solid at temperature T = 0, where ~ is negative when 
melting is endothermic (alternatively, ~Ts may be defined as the heat of melting at the temperature 
Tin, in which case the term proportional to Tm on the righthand side of [11] would be absent). Thus, 
there are discontinuities in gradients of temperature and other variables at )73 = £,,, but the 
variables themselves remain continuous across the interface. 

The model just described is meant to be a reasonable representation of certain classes of 
materials, such as the nitramine propellant HMX, that satisfy the main assumptions outlined 
above. Typical values associated with the physical properties of two widely studied nitramines, 
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HMX and RDX, were quoted in Mitani & Williams (1988) and in Li et al. (1990). Some of the 
approximations introduced above, such as the assumption of temperature equilibrium between 
phases, represent reasonable limiting cases, with order-of-magnitude estimates suggesting in 
particular that effects due to departures from the single-temperature limit are small in nitramine 
deflagration. Finally, although the present analysis is performed for the case of an unconfined 
deflagration, which is certainly of physical interest, the model itself allows for the analysis of 
confined deflagrations as well, as evidenced by the appearance of the pressure-derivative terms in 
[5] and [6]. 

3. N O N - D I M E N S I O N A L I Z A T I O N  

The preceding formulation is given in terms of dimensional variables (identified by tildes). For 
the greatest convenience and generality, analyses are best performed using a suitable set of 
non-dimensional variables. For the present problem, an efficient selection is 

x , -  ; ,  x, ,  t -  )~, t, T = ~ , , ,  UL.C, 0 '  p~ fin [13] 

where the characteristic velocity 0 is taken to be the speed of propagation -d~m/dTof  a steady, 
planar deflagration, an explicit asymptotic expression for which has been derived previously 
(Margolis & Williams 1995a) and is restated below. The reference density Pn in the last of [13] 
denotes the gas density at the unburned temperature T~, and, from [7], is given by 
fin = fi~ W o / R ° T ~  • 

The introduction of the non-dimensional variables defined above into the formulation presented 
in the preceding section results in a number of non-dimensional parameters. As in our previous 
studies (Margolis & Williams 1995a, b), these may be defined as 

r = ~ - ,  ? = ~ - ,  l =  [ b /~=cc  

E 
V s = ~  ' Q = ? s T u '  N = R - - ~ b '  A = ~ e  N, [14] 

where constant values for heat capacities and thermal conductivities have now been implicitly 
assumed. The last two parameters defined in [14] are reaction-rate parameters, N being a 
non-dimensional activation energy and A a non-dimensional burning-rate eigenvalue that enables 
the characteristic propagation speed 0 to be determined from its definition and its value. We note 
that, in the analysis that follows, Q will be treated as a constant, even though this is strictly true 
only when b = b, which is often a realistic approximation. These non-dimensional variables and 
parameters will be used from now on in this paper, and [1]-[12] are transformed accordingly. 

4. THE OUTER PROBLEM 

In the limit of large activation energy, the reaction zone collapses to a reaction front located at 
Xa = xr(x~, x2, t) > Xm(X~, X2, t),  and it is convenient to transform to the (non-orthogonal) moving 
co-ordinate 

¢ = X 3 - -  X r ( X l ,  X2, t) [15] 

whose origin is thus defined to be at x3 = xr. Introducing this transformation and the above 
non-dimensionalizations, the problem defined by [1]-[12] becomes 

aXm ( ~ - -  1) [16] 
U L  = - 0 - - / -  

,~t + ~  p~ u° -~ t J J=° '  ~<-(xr-x.,), [17] 
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a t [ E ( / p G - r ) l +  r ( 1 - Q  U L - - - ~ ) - ~ - F f . p G ~ U  G --  at jj=O, (>--(X,--Xm),  [181 

~] [ // (~.X'r , -  ] [ ( - -~) ]  ~7 ~ (I--')tUL--TFr)I----A(I--')exp g l -  , ~>--(Xr--X.) , [191 

a 
c3t {[I -- G) + f'GpG]T} + ~ {[(I -- G)( ---fff)+rI~G(UG--~-)pG]T}OX"~. Ox, 

=Vr'{[1--Es-'[-/Es]VrT}, ~ < - - (Xr - -Xm)  , [20] 

m Oxr 0 [r(1--e)(Q+bT)+fbEpGT]+~Ir(1--Q(UL--~f)(Q+bT)+f~E(UG--~t)pGT ] Ot 
=V~' {[l(1 -c)+[E]V~T}, ~ > --(Xr--Xm) , [21] 

Pc T = 1, [22] 

subject to 

E = q  for ( < - - ( X r - - X m ) ;  UG'-'~'0 , T-~I as ~--*-oo, [23] 

E~I, T~Tb as ~--.+oo, [24] 

elc=-~xr-x~O=q, Tlc=-(x~-x.O = Tm, [25] 

[l(1 -- G) + ~s]l~m " V~T]¢= _(Xr_Xm)+ - -  ( 1  - -  ES) "[- k s ) ~  m " V~ T[¢= -{xr-x,.)- 

(~X m 
=-G~, ' -xv- (1  - q ) ( - V , + ( b  - 1)Tm]. [26] 

O t  

Here, Vr is the non-dimensional gradient operator expressed in terms of the moving co-ordinate 
system attached to the reacting surface, the xr ,  x2- and x3-components of which are given by 

( ~  (~Xr0 ~ 0Xr 0 ~-() [27] 
Vr = bX 1 OX I O('  (~X 2 aX 2 O('  " 

The point of departure from our previous study (Margolis & Williams 1995b) resides in [22], since 
the earlier analysis was performed for the trivial equation of state PG = 1, corresponding to constant 
gas density, while the present analysis allows for ideal gas-phase compressibility. The special case 
of steady, planar deflagration (Margolis & Williams 1995a) is recovered from this formulation by 
setting partial derivatives with respect to time and the transverse spatial co-ordinates (x2, x3) to 
zero. This basic solution is written down explicitly below, but for the present we note that the final 
burned temperature Tb that appears in the boundary condition [24] for the general non-steady, 
non-planar problem may be readily calculated from this special case as 

(1 - Es)(Q + 1 + ys) + i&~ 
Tb = /~[1 + q ( f  -- 1)] [281 



76 s. B, M A R G O L I S  and F. A. WILLIAMS 

This result is valid for both constant gas density and the compressible equation of state [22], as 
well as for the more general two-temperature case in which the rates of interphase heat transfer 
are finite (Margolis & Williams 1995a). 

For additional simplicity in analyzing the effects of gas-phase compressibility on the stability of 
the deflagration, we shall assume that the gas-phase is quasi-steady with respect to the instan- 
taneous reaction-front position x3 = Xr (Xl ,  X2, t) (i.e. ~ = 0 in the moving co-ordinate system). As 
a result, time derivatives of  gas-phase variables are neglected in [17]-[21]. This assumption can be 
formally justified in the limit that f is small by introducing additional (short) characteristic temporal 
and spatial scales associated with the gaseous phase, which imply a larger characteristic velocity 
for the gaseous phase relative to condensed-phase velocities. With such a rescaling, gas-phase 
quantities are functions of  their natural (short) space and time variables, and in addition, are 
functions of  the longer condensed-phase space variables due to the forcing on that scale that arises 
from condensed-phase processes. In the quasi-steady approximation, it is implicitly assumed that 
only variations on the longer spatial and temporal scales associated with the condensed phase are 
of  interest, leading to the absence of time derivatives of gas-phase quantities, which evolve only 
on the short gas-phase time scale. Thus, on the condensed spatial and temporal scales, the 
non-dimensional velocity u ~ -  Oxr/t3t becomes a relatively large quantity, of order 1/L Restoring 
[17] to its original form through multiplication by f, it is seen that the second term, being of order 
unity, dominates the first term, which is of order f. Hence, all non-convective terms in [17]-[21] 
that are multiplied by P get dropped, and these terms are precisely the time derivatives of gas-phase 
quantities. That  is, the gas phase responds to the local generation of additional gas in the reaction 
zone on a much faster time scale than that which governs the dynamics of the condensed phases. 
Although the assumption of gas-phase quasi-steadiness is well-established in studies of intrinsic 
combustion instability [cf. Denison & Baum (1961) and the recent reviews by De Luca (1992) and 
De Luca et al. (1995)], it is important to note that ignoring the dynamics that occur on the shorter 
gas-phase time scale does filter out any intrinsic dynamics associated with gas-phase processes. 
Indeed, such dynamics can be of the same order of magnitude as the dynamics associated with the 
condensed phase, examples being the diffusional/thermal and hydrodynamic instabilities that, just 
as in ordinary premixed flames, can occur in solid-propellant flames (cf. Margolis & Williams 1988, 
1989). Nonetheless, assuming that intrinsic instabilities associated with the condensed and gaseous 
phases do not occur in the same parameter regimes, the quasi-steady approximation for the gas 
phase is useful for simplifying the analysis of the condensed-phase dynamics, while still allowing 
for an appropriate coupling with gas-phase quantities. 

As has already been anticipated in our introduction of the moving coordinate ~, we consider the 
limit of  large activation energy (N >> 1), in which case all chemical activity and heat release 
associated with the reaction term in [19] are confined to a thin O ( N  -~) reaction zone at ( = 0. In 
this way, the original distributed-reaction problem is reduced to a pair of reactionless problems 
in the outer regions ( < 0 and ~ > 0, the solutions of which must be matched to the reaction-zone 
solution valid in the thin inner region I~l'~ 1. The result is an asymptotic model for the outer 
variables, subject to nonlinear jump conditions across ( = 0 that depend on local conditions there, 
and an evolution equation for xr(xl ,  x2, t). 

The outer solution for the gas-phase volume fraction and velocity is given by 

< 0 [29] 
E = {EI~, ' ~ > 0 ,  

~ - ( T  - 1)t~Xr/dt, ( < 0 
uc = ~Tg(x l ,  X2, t) + OXr/Qt , ( > 0, [30] 

where the first of these indicates that all variation in the volume-fraction variable E is confined to 
the inner zone analyzed in the next section. Equation [30] follows from the neglect of gas-phase 
time derivatives owing to the quasi-steady assumption for that phase. Thus, uc is given in terms 
of the local temperature and the instantaneous propagation speed of the reaction zone, with the 
"constant" of integration g(x l ,  x2, t) to be determined. By use of these results and the equation 
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of state [22] in [20] and [21], and the neglect of all gas-phase time derivaties, the outer problem 
becomes 

OT ^ [ c~xr\ c?T 
( 1 - ( . s ) - ~ + ( 1 - e . ~ + f b e s ) t - ~ - ) - ~ = ( 1 - q + [ E ~ l V ~ T ,  ~ < --(Xr-- Xm), [311 

~ 8Xr 8T 1 8Xm OT 
r b ( 1 -  c~) ~-~ + [ r b ( 1 -  Es) + rbE~](-~7)-~ .  - b ( -- r)( l  -- q )  ~ ~ 

=[/(1--Es)+ks]V~T, --(Xr--Xm)< ~ <0 ,  [32] 

.^ 8T 
rbg ~ -  = [V~ T, ~ > 0, [33] 

subject to the boundary conditions T-+I as ~ -  oo and T ~ T b  as ~ + 0% plus the continuity 
and jump conditions T = Tm and [26] at ff = - ( x , -  Xm). From the expression [27] for Vr, the 
Laplacian operator V~ in the (xj, x2, ~) co-ordinate system is given by 

6~ 2 6q 2 (~r2 ~2 __263Xr 0 2 67X, 6~ 2 (e2Xr 6~2Xr'~L 

V~ = ~ -'t- ~ -+- ~ r  ~ 2  (~X I 8X, 8( 2 8x 2 0x 2 {~ff t a x i  2 --I- 8x22 ) 0 ( '  [34] 

where 

ar = W1 .~_ (OXr/OXl)2 _~_ (OXr/OX2)2 . [35] 

These conditions, however, are still not sufficient to completely determine the solution for the outer 
variables. To do so requires additional jump and continuity conditions across the thin reaction zone 
located at ~ = 0, as well as an expression for the gas-velocity function g(x~, xz, t) in the region 

> 0, which necessitates an analysis of the inner reaction-zone problem. 
The derivation of two of the additional conditions needed to close the outer problem may be 

obtained directly from an integration of [21] across the thin reaction region; i.e. from ff = 0- to 
= 0 ÷. Using the results [29] and [30], and accounting for the fact that quantities such as E, T, 

eucT, ET, (1 - Q T ,  E ST/8~ and (1 -E )8T /8~  behave, in the limit of large activation energy, as 
distributions there, the continuity and jump relations 

Tic=0 = Tk=0+ [36] 

and 

~ ~Xr OXm) T I- ~X r OX m 7 
f / ~ g + [ ( 1 - , s ) r b + E s t : b ] ~  - + ( 1 - q ) ( 1 - r ) b - - ~  [~=0+(1-Es)QLr ~ + ( 1 - r ) ~ - ~  

/'SXr dT c3xr 8T\I 2 .~3T 0T 

are obtained. The structure of the inner reaction zone, with suitable matching of solutions in that 
region to the outer solutions, must now be addressed to obtain an additional jump condition across 

= 0 and an expression for the function g introduced in [30]. We thus emply the method of matched 
asymptotic expansions and seek solutions to the outer problems in the form of the expansions 
T ..,.. T (°) + N - I T  °) + N - 2 T  ~2) + • • •, and similarly for the gas-velocity function g. Hence, to leading 
order, the outer equations obtained thus far are given by [26]-[37] with T and g replaced by T ~°) 
and g(0), respectively. 

5. THE REACTION-ZONE SOLUTIONS 

Spatial variations in the reaction-zone solutions in the normal (~) direction occur on a short, 
of order N -  ~, length scale relative to that of the outer solutions. Accordingly, it is appropriate to 
introduce the stretched normal co-ordinate r/defined by 

r/=/3~ =/~(x3 - xr), /7 = (1 - Tbl)N, [38] 
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where fl is the Zel'dovich number, and it is also convenient to introduce the normalized temperature 
variable 0 --- (T - 1)/(T b - 1). Solutions to the inner problem are then sought in the form of the 
expansions 

G~G0-{- fl IGl'q'- fl 2(2-{-''" ' 
u G ~ u o + f l - % + f l  2 u 2 + ' " ,  

O ~  l + fl I01+ fl 202"[-''' , 
A ~ f l ( A o + f l - I A l + f l - 2 A 2 + " ' ) ,  [39] 

where the latter represents the appropriate expansion of the burning-rate eigenvalue of the basic 
solution corresponding to steady, planar burning. Substituting these expansions and definitions 
into [18], [19] and [21] and equating coefficients of like powers of fl, we obtain the leading-order 
inner problem in the following fashion. With [16] for UL, [18] gives 

( r)OXr~Go OXm~Go f (~ 
r---~b ~ -  ~-~/ + (1 -- r) ~7- ~-q + ~-bb ~ (G0 U0) = 0. [40] 

Integrating this result and applying the matching conditions e0--+es and u 0 ~ -  (Tb-  1)OXr/& as 
r/---,- aZ, we obtain an expression for u0 as 

Tb(G0 -- es) [ t~Xr ~3Xm-I ~Xr~t 
UO -- reo-: a ( f  --  r )  ~ 7  -- (1 --  r) ~ - / - -  (Tb -- 1) - - .  [41] 

This result differs from that in Margolis & Williams (1995b) for constant gas-phase density, but 
the corresponding formula for that case can be obtained from [41] by setting Tb = I. That is, the 
gas velocities with and without gas-phase thermal expansion differ by an amount proportional to 
the temperature rise T b - -  1. From the matching conditions e0~l and Uo--+Tbg(°)q-~Xr/t~t a s  

r /~  + oo, an expression for the outer gas-velocity function gm)(x~, x2, t) in the region ~ > 0 is then 
found to be 

g(°)(Xl, X 2 ,  t) = 1 - es [ c3xr ~Xm-] " C'~Xr [42] 
P _(f -- r )-~-  -- ( 1 -  r) ~t j ~t ' 

which is needed in [33]. 
Utilizing [16] and [41] for the liquid and gas velocities, respectively, we find that the remaining 

part of the leading-order inner problem for eo and Ol is now determined from [19] and [21] as 

I ~X r (~Xm 7 (~G 0 
+ (1 - r)--~-/ff~n = - rA0(l  - co)e <, [43] r ~ -  

I ~Xr ~Xm"] ~-0 1 ) G ~  { ~01~, + (1 -- r) ~ - - / [  Q _  + (b - b ) T b ]  ~ = ( T  b - &l [I + ( [ -  l)e0] ~ j [44] r - ~  

subject to the matching conditions 

eo~l ,  01,,, O")l~=0+ as r / ~ + o o  [45] 

and 

OO(°)[ 
e0~e~, 01~O(I)l:=0 + r / ~ - -  = ° as q ~ - ~ ,  [46] 

where, consistent with the definition of O, the O ") are defined as O ") = (T (° - 1)/(Tb -- 1). We note 
that since spatial variations in the normal (() direction are large relative to those in the transverse 
direction and those with respect to time, as reflected in the transformation [38], the reaction-zone 
problem [43]-[46] is always quasi-steady and quasi-planar, independent of the assumption of 
quasi-steadiness for the outer gas-phase equations introduced in the previous section. Thus, 
integrating [44] using [45], and then transforming to e0 as the independent co-ordinate according 
to [43], we obtain a first-order equation for 01 given by 

d01 = H2 ~ Q + (b - -  5)T b 1 [47] 
rA°e°' &o ' -T-7--- f " l + ( [ - / )Go"  
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where 

_11- ax, aXm-1 
Hm,r = - G r  l r -~ -  + (1 - r ) -~ - J .  [48] 

Equation [47] may then be integrated with respect to E0 by using [46] to give 

rAoeOJ=H2,rQ +(b--b)Tb 5(f--l)-'{ln[t +(f--l)Eo]--ln[l +(f--l)Es]}, r # l  [49] 
"  Z-l(E0-- f = t .  

For the special case of  steady, planar burning, axm/dt = axr/at = - 1, and O(1)1¢=0+ = 0 in the 
matching condition [45]. Since [49] must hold for all solutions, these conditions determine the 
leading-order coefficient A0 in the expansion [39] for the burning-rate eigenvalue as 

A0 a + ( b  - - b ) T  b 5(f-l)- '{ln[-ln[l+([-l)Es]},  [ ~ l  [50] 
= ~'~b ~ ~ [ l - I ( l  -- Es), / '=I ,  

in agreement with the result obtained from the steady-state analysis in Margolis & Williams 
(1995a). Here, TD was given in [28], a result that in fact applies for the general non-steady, 
non-planar problem. An alternative expression for Tb in terms of  Tin, the non-dimensional 
endothermic heat of  melting of  the solid at temperature Tm, is 

(1 --  es)[Q + 1 + (b - 1 )T m -  Ym] + :be, 
Tb---- /~[1 + ¢s(: -- 1)] ' [51] 

and can be derived in an analogous fashion from the steady-state version of  [16]-[26] when the 
factor -Ys + (b - 1)Tm is appropriately replaced by simply Ym in the interface condition [26]. 

For the general non-steady, non-planar problem, [49], [50] and the matching condition [45] yield 
the local temperature-dependent propagation law 

Hm, r = exp(½~9 '[¢=0+ ). [52] 

Equation [52] introduces the next-order outer variable O l into the analysis, but this additional 
complication, which is fundamental to this type of analysis (cf. Margolis & Williams 1989), can 
be circumvented in an approximate fashion by truncating the inner expansion [39] for O after the 
O(f1-1) term, so that the matching condition [45] implies that O(1)1¢= 0 = fl(O[~=o-1). Reverting 
back to the original outer temperature variable T, we find that [52] may be expressed as 

- r - - ~ - - ( 1 - r ) - - ~ - =  l + \ a x t ]  + ~x2 exp 2" Tbb--1 ' 

where we have used the definition [48] for Hm,r. Substitution of [53] and the expression [42] for g 
into [37] then leads to the result 

aT . 2lax, aT a X  r aT\l 

=-(,-E,)[Q+(b-,)Tl¢=o]G~-lexp( fl Tb-TbT[=° ) 2" ~ , [54] 

which, if we retain [53], replaces [37] as the required jump condition across the thin reaction zone. 
When the outer solution is approximated (truncated) by setting T ~ T (°) and g ~ g(0), the derived 
conditions [36] and [37], the propagation law [53], and the expression [42] for the outer gas-velocity 
function g close the outer problem [23]-[26], [29]-[33]. We observe that, despite differences in the 
expression for the gas velocity, [53] and [54] are identical to those obtained from the corresponding 
analysis (Margolis & Williams 1995b) for the case of  constant gas density. 

6. S U M M A R Y  OF THE A S Y M P T O T I C  M O D E L  AND ITS BASIC S O L U T I O N  

The model derived in the previous two sections constitutes an asymptotic formulation, valid for 
large activation energies, of  deflagration in porous energetic materials for the case of  a thermally 

JJMF 22/I--F 
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expansive, quasi-steady gas phase. In this regime, the reaction zone becomes thin relative to the 
convective-diffusive structure of the deflagration wave, in such a way that both the jump condition 
across the reaction sheet and the propagation law that governs its motion display a sensitivity to 
local temperature perturbations. This sensitivity is of a finite, but exponential, form that is induced 
by the original Arrhenius nature of the reaction rate in the asymptotic limit described above. It 
is helpful to collect the above results for future reference. Hence, the asymptotic mode, expressed 
in non-orthogonal co-ordinates (x~, x2, () attached to the reaction surface (( = 0), is given by 

(1--Es)lr0bI~--- rb+e~(,(-rb),b e3t c9( ,' r, ',lOI  

[ l " ( 1  Al'- ~s(f-- 1)} ( < --(Xr-- Xm) 
= ~ '  "~-Es([-- ' )  ~7~ T, - - ( X r - - X m ) <  ( < 0 ,  [55] 

( > 0  

subject to 

--r-~-(1--r)-~-=Grexp 2 ~ ~ , [56] 

T ~ I  as ( ~ - - ~ ,  T~Tb as ( ~ + ~ ,  T=Tm at (=--(Xr--Xm), [57] 

( OXmox, ' Ox,,ox2 ' 1) "{[l+(s(f-l)]v'Tlc= (Xr-X")+-[l+~'s([-1)]VrTlc=-("~r-~m)} 

OXm 
-- 0t (1 -- Es)[--~) s + (b -- 1)Tm], [58] 

Tic=o- = Tic=o+, [59] 

A ¢3T 
T ~  C=0+-  it ..[_ ( 1 -  / ) ~ s ] ~  C=0 _~_ ( 1 -  ES)(I - T ) G r 2 ( ~  I (~r (~x r ~ r ~  

= - ( 1 -  ~ s ) [ Q + , b - b ) T l ¢ -  0]GF' exp( f12 Tb--T-b TI. ~ =0), [60] 

where the dot in [58] represents the scalar product of the vector on the left with the operator V, 
given in [27], and where expressions for V~ = Vr' V, and Gr were given in [34] and [35], respectively. 
Equations [55]-[60], which constitute a closed boundary-value problem for x,, Xm and T, may be 
solved subject to arbitrary initial conditions. Here, however, we shall only be concerned with the 
long-time basic solution corresponding to a steady, planar deflagration, as described by the 
formulation derived in the previous section, and its stability. We note that other variables of 
interest, such as the gas velocity, are given in terms of x,, Xm and T according to the formulae 
derived in the previous section. 

A basic solution of the model [55]-[60], corresponding to a steadily propagating planar 
deflagration and denoted by a zero superscript, is given by 

o o I(1--E~)+/E~ , fTb-B'~ 
X0m = --t, X, = Xm -[- b(l - - ¢ ~ l n ~ T ~ - -  B) '  [61] 

• . [-1 + ~s ( ,~ -  l ) . .  ] l+(Tm-OexPLl+~Af_l ) t~+z°-x °)J, ( < - ( x ° - x  °) 

~. Fb(1 - Es) + Cges . .  ] TO(()= B +(T,~--t~)exp/ l¢ +x°-x  °) , - ( x ° - x ° ) < (  < 0  
J L l(1 

T~ = (1 - e~)(Q + 1 + ~ )  + ~E~ 
g[1 + E~(f -- 1)1 ' ( > O, [621 



STABILITY OF DEFLAGRATIONS IN POROUS ENERGETIC MATERIALS 81 

where 

(1 - e~)(1 + 7~) + f6es 
B - b(1 - e~) + f/~c~ [63] 

In addition, from [30] and [42], the steady, planar gas-phase velocity u ° is given by 

.(T - 1, ( < 0 [64] 
U°=~.f-m[(1--f)(l--E~)+(Tb--1)(1--E~+e~f)], ~>0. 

Finally, the propagation speed of this solution is determined from the last of [14] and the derived 
expression [50] for the burning-rate eigenvalue. The various features of this solution as a function 
of the parameters in the problem were described in considerable detail in Margolis & Williams 
(1995a). Here, we are particularly interested in the effects of the porosity E~, in the realistic limit 
of small gas-to-solid density ratio f, on the stability of steady, planar deflagration. As shown in 
the next section, the value of the burned temperature plays a critical role in determining the 
corresponding neutral stability boundary, in part because the propagation velocity is exponentially 
sensitive to Tb in this regime of large activation energy (see the last of [14]). From [28], T b has the 
behavior 

Tb=~IQ+l+7s- f le~e(Q+l+y~-6)+O(f2)] ,  [65] 

for f ,~ 1. Since the non-dimensional heat release Q is typically significantly larger than unity, 
whereas the specific heat capacity ratio/~ is generally not significantly larger than unity, the final 
burned temperature, and hence the steady mass burning rate, decrease with increasing porosity and 
increasing gas density (Margolis & Williams 1995a). 

7. LINEAR STABILITY ANALYSIS 

Using the derived asymptotic model, the linear stability analysis of the basic solution [61]-[63] 
follows a standard approach and parallels our earlier (Margolis & Williams 1995a) stability 
analysis. Briefly, perturbation variables qSm(X l, X2, t), qSr(Xl, X2, t) and r(Xl, x2, ~, t) are defined 
according to 

dT 0 
Xm=XOm-{'-~)m, X r = X r 0 " { - ~ r ,  T= T°(()+ z +~pr --d- ( . [66] 

These definitions are substituted into the asymptotic model defined by [55]-[60], and the equations 
are linearized with respect to the perturbation variables to obtain a linear problem for q~m, ~br and 
z given by 

( 1 - - , s ) ~ - ~ + [ l + e s ( f S - 1 ) ] ~ = [ l + , s ( / ' - l ) ] \ ~ - ~ x t Z + - - +  ( < - ( x ° - - x ° ) ,  [67] 

aT OT ~ m  dT° rb(1 - q ) ~  +[b +Es(f /~--b)]~ - b ( 1  - r ) ( 1  -e~) 
d( 

=[l + ¢~([-/)]~O-~xt z + t3x---~ + ~-~}' - ( x °  - x°m) < ¢ < O, [68] 

Of -/02~ 023 c~2~'~ 
/711 +E~(f - 1) ]~  =/~x2+~-~x22+~-~j, ( >0,  [69] 

t~0r x ~(~m fl 
- - r -~-  - ( 1  --r) ~- = 2(rb-- 1) zl¢=°÷' [701 

subject to 

z ~ 0  as ( ~  + ~ ,  [71] 
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( :( 
(& d~TO'xl ( d:T°'~[ --  [1 + E , ( Y -  1)] 0z  [7 + , . ( i -  t)] ~ + ~'m-a-(r) , :  -<#- xO.,. ~ + <~° ~ ) 1 , :  -(~- 4,- 

~4~m 
Ot 

[72] 

- - - -  (1 --Es)[--7~+(b -- 1)Tin], [73] 

,k=0-=0+ ~' ~-~-),=o-' 

-~A=0- 

1 
+ ( b - / ; ) ( 2  + Tbfl~T_b 1)lZ 1¢ = o+, 

[74] 

[75] 

where we have used the fact that dT°/d( = 0 for ( > 0. 
From [66], steady, planar burning clearly corresponds to the trivial solution 4b m = 4b, = ~ = 0, 

whereas non-trivial solutions to the linear stability problem are sought in the form 

f+ t r =ei(°"+km+k2x2) 1 , [76] 

l'~(~)J 
which has been normalized by setting the coefficient of  ~r equal to unity. Equations [67]-[69] and 
[71] then determine the function or(() as 

{ ° °  c ie  ~ ~ < - - ( x  r - -  X m )  

a ( ( )  = c2e q-¢ + c3e q+¢ + ico(ico~3 + k2)-Icmb2b4(Tm - B ) e  b2~, - ( x  ° - x ° )  < ( < 0 

C4 es~, ~ > O, 

[77] 

where the ci are constants of  integration, and the other quantities that appear in [77] are given by 

bl = 1 + Es(f/~ -- 1) /~ _-- 1 - -  £s b2 = b + Es(f/~ - b ) ,  
1 + E s ( / ' -  l )  ' 1 + cs ( [  - 1 ) '  l + Es(]" - l )  

rb(1 - E,) b(r  - l)(1 - c,) 
5 3 = 1 + E ~ ( [ _ 1 ) ,  b , =  l + c ~ ( / ' - l )  ' b5= [ 1 + ~ , ( ? - 1 ) ] ,  [78] 

and 

'I } '[ } p = ~  b t + x / b ~ + 4 ( i c o / ~ + k  2) , q + = ~  bE_+xfb~+4(ico~3+k 2) , 

' = ~ [ b s - ~ ] .  [79] 

The remaining conditions embodied in [70] and [72]-[75] serve to determine the ci and the dispersion 
relation co(k), where k = ~ +k~-  

8. ANALYSIS  OF THE D I S P E R S I O N  R E L A T I O N  

The linear stability analysis is completed for a representative case in which r = b = l = 1, 
corresponding to the neglect of  differences between the physical properties of the solid and liquid 
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phases of  the material. While this restriction is introduced in order to reduce algebraic complexity, 
it clearly can be relaxed if there is interest in other values of  these parameters. As a result, bl = b~, 
~ = 63 (which implies that q+ = p)  and b4 = 0. Then, from [70] and [72]-[74], the coefficients in [77] 
are determined as 

--cmb,(T m -  1)eq+(x°-~ ), c2=(B--1)cmbi(q- -F ito~eq-(~-X°m), £ 1 =  \ q -  q+/  

c 3 : - C m b l [ T m - l + ( B - - l )  q++itoleq+(x~-~), C4=--2itoTb--1 [80]  
q- - -q+d fl ' 

where x r° _ Xm° was given by the second of  [61] and 

[(T b -- 1 ) ( b  I Jr- 2ito/fl) - (e  - 1)bl]e -q+(x~-x°m) 
[81] Cm = b~(T~ - 1) - (B -- l)b~ (q_ - q+)-i[(q_ + ito)etq_q+)(~-~)_ (q+ + ito)] • 

We remark that, in light of  the above simplification, all effects due to melting of  the solid are 
embodied in the parameter ~ .  In the limit that the heat of  melting becomes negligible 0,~-~0), we 
have B-~ l  and hence c2-~0. In that case, the functional form of the temperature function a ( ( )  is 
the same on either side of~ _ ( x  0 _ 0 = x~), and the melting surface becomes effectively "invisible". 

An equation for the dispersion relation to(k) is now obtained by substituting the results given 
thus far into [75]. The result is, in terms of  the coefficients defined above, 

[gc4--(1--Es+[es)[q_c2+q+c3+b2(Tb--B)]= - ( 1  - E,)[fl Q 2(Tb ~ ]  ~ +  (1 -- ~)Tb + 1 - /~]c4,  [82] 

where s and q± depend on /co and k according to their definitions given above. This is a fairly 
complicated dispersion relation, but typically, the gas density is small compared with that of  the 
condensed phases, the thermal conductivity of  the gas is correspondingly small, and the heat of  
melting is small compared with the thermal enthalpy. For these reasons, the gas-to-solid/liquid 
density ratio P is treated as a small parameter, and the scalings 

/ '= T'e, Ys = ~*P- [83] 

are introduced for the corresponding conductivity rat io/ 'and the non-dimensional heat of  melting 
y,, where the scaled values [* and y* are considered to be of  order unity. The dispersion relation 
to(k) is then expanded as 

to ~ too + co! P + to2 ~ +"  • •. [84] 

Associated expansions of  all quantities in [82] that depend on these small parameters are then 
performed, keeping the overall heat release Q0 with respect to the solid, 

Qo = Q + y~, [85] 

a fixed parameter. Under this constraint, there is an expansion of  the burned temperature Tb 
according to [28] as 

rb ~ r ° +  ~r~ + . . . ,  

In addition, the expansions 

Q o + l  e, ( ~ _ 1 ) .  [86] 
~ = - - - g - - ,  T~, = - 1 _---- ~ 

and 

Es Es [ * ~ + - " ,  [87] B - l ~ y * i ,  [~-~O(f2), b l , - , l + l _ - ~ ( ~ - - r * ) f + . . .  , ~ l ~ l - - l _ e ~  

q+~qO +q~p + . . . ,  qO=~ l + x / l + 4 ( i t o o + k 2 )  , 

[ 4k2)] ' ito' 1 E, ~ -- 2/'*q~: + G + f*(2itoo + :I= ~ - -  
q ~ : = 2  l----e, 2-~+ : 1 1 

[881 
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Figure 2. Leading-order neutral stability boundaries flo(k) (solid curves) as a function of wavenumber 
for several values of the gas-to-liquid/solid heat-capacity ratio b'. Also shown is the corresponding neutral 
stability boundary (top curve) for the strictly solid combustion-synthesis (SHS) problem, and the modified 
boundaries fl°(k) (chain<lot and chain<lash curves for constant and non-constant gas density, respect- 
ively) that are obtained when the next-order correction with respect to ~ is included. The latter boundaries 
are calculated for reasonable values of  the remaining parameters (q = 0.3, ys=0,  P =0.1,  [* = 1.0, 

T O = 6.0). 

apply. Substitution of these expansions into [82] determines the equation for the leading-order 
dispersion relation co0(k) to be (2ira0 + fl)(1 - q O )  + i~o(fl - 2/~) which, after some manipulation, 
can be expressed as 

4(i~o0) 3 + (i~Oo)214k 2 + 4/;(1 - / ; )  + 2(1 + 2( ) r  - r2)] + 2i~o0r (6 + 2k 2) + r2k 2 = 0. [89] 

This dispersion relation is identical to the result obtained previously (Margolis & Williams 1995b) 
when a constant density for the gas phase was assumed. It is therefore concluded that, in the first 
approximation for small values of P, the gas-phase thermal expansion has no effect on the stability 
behavior, a result that might be anticipated based on the small contribution of the mass fraction 
of gas in this limit. 

The neutral stability boundary, corresponding to neither growth nor decay of the infinitesimal 
perturbations of the form given by [76], can be displayed in a plane of the Zel'dovich number r,  
defined by the second of [38], and the non-dimensional wavenumber k. This boundary is obtained 
by setting the real part of the complex growth rate ico to zero. By setting the real and imaginary 
parts of [89] separately to zero, the neutral stability boundary at leading order, ri0(k), can be 
obtained as the positive root of the quadratic 

(6 + 2k2)ro 2 + 2[k 2 - (1 + 2/;)(/; + 2k2)]ro - 4(/; + 2k 1) [/;(1 - / ; )  + k 2] = O, [90] 

and the corresponding leading-order frequency too(k) of the neutral disturbance is 
2 I 090 = $r0(b + 2k2). [91] 

Since co o # 0, the stability boundary is of the pulsating type, like that obtained by Denison & Baum 
(1961) and others (cf. Margolis & Armstrong 1986; Margolis & Williams 1988) for solid-propellant 
combustion in the absence of two-phase flow (such intrinsic pulsating instabilities are also 
observable experimentally; cf. Zanotti e t  al. 1992). This leading-order stability boundary was 
obtained and discussed previously (Margolis & Williams 1995b), and, for completeness, has been 
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included in figure 2 (solid curves), which also exhibits the next-order approximation for a modified 
Zel'dovich number fl°(k) (chain-dash and chain-dot curves) as discussed below. Several curves, 
corresponding to different values of/~, are shown, indicating that decreasing values of/~ are 
destabilizing, which suggests that diminished thermal influences of the gas phase (which convects 
heat away from the reaction zone in the direction of the burned region) is less able to damp the 
known thermal/diffusive instability of the condensed phase (cf. Margolis 1991). Indeed, we also 
show for reference the neutral stability boundary corresponding to strictly condensed-phase 
combustion (combustion synthesis), which can be recovered from the present analysis by setting 

=/" = 6 = 1 and Es = 0 in [82]. This stability boundary, which is determined (in the absence of 
melting) from the dispersion relation 

4(i¢n) 3 + (ico)2[1 + 4k 2 + 2fl _l~fl2] + ½(ico) (1 + 4k 2) + lfl2k2 = 0, [92] 

is qualitatively similar to the stability boundaries obtained from [89], reflecting the fact that 
this particular type of instability phenomenon arises from combustion of the condensed 
phase, with the presence of the gas having a secondary, perturbative effect as discussed below. 
The fact that the minimum value of fl0(k), given by fl0 = 1 + 26 + x / -~ ,  occurs at a non-zero 
value of k = (6/8) 1/4 > 0 (as compared with fl0 = 1 + 26 + x/1 + 86 at k = 0) suggests that non- 
planar, cellular patterns will be observed at the transition to non-steady burning as the stability 
boundary is crossed. Since the leading-order results for the neutral stability boundary are 
independent of the porosity es, they are also the same as those obtained previously for the 
non-porous case (Margolis & Williams 1990) as well as for a different model in which two-phase 
flow effects were suppressed in favor of an intrusive gas flame adjacent to a pyrolyzing solid surface 
(Margolis & Armstrong 1986). Consequently, these same or very similar results are likely to occur 
in a variety of different energetic systems. 

Since the leading-order results regarding the neutral stability boundary are independent of es, 
to investigate the effects of non-zero porosity it is necessary to proceed to the next order in the 
ratio of gas density and conductivity to those of the condensed phases. With the neutral stability 
boundary thus represented as 

fl ~ fl0+ fl~ + ' " ,  [93] 

an expression for col(k), introduced in [84], can be obtained from the dispersion relation at O(f) 
given by 

iv), flo+2(1 - 6 - q ° + )  2 q O + - - i - ] + ~ - o  [ q ~ -  1 +6)fl ,  = flo(1 - q ~ ) f *  

1 2ico0 + flo [6 } 
+ [½ flo (2q 0+ _ 3) - icoo (fl0 - 1)]6 + 2" 2~+ ~ 1 + (2icoo + 4k2)/*] 

--y*{(T~b--1)-l[flo(icoo--q°)--~(2icoo+flo) 1 

+ (Tm -- 1)-l(ico o + q0)(2iw0 + flo)e (q°- -qO+)l.[~-t)/(rr.-I)]}, [94] 

where flo and co o were given by [90] and [91], respectively. We observe that [94] differs from the 
corresponding result in our earlier study (Margolis & Williams 1995b) that assumed a constant gas 
density, and thus modifications in the neutral stability boundary due to thermal expansion of the 
gas appear at this order in the analysis. Setting Re(icol) to zero and equating real and imaginary 
parts of [94] separately to zero then gives a coupled system of linear equations for fll and col as 

al.l COt + al ,2f l l  = CI,I "k- CI,2[* + Cl,3~ ~ 

a2,1 col -I- a2,2fll = c2,1 + c2af* + c2,37", [95] 
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where 

2ogoqr- floqi ogoqi 
a l , l = q i q  q~+q2  , aL2-  flo ' 

2o9o q~ + flo qr az2 = ~o ° (qr -- 1 A- 2/~), a2,1 = flo -'1"- 1 -- 2f~ -- qr 2 2 ' 

qr + qi 

C l ,  2 ~ - - - -  

e l ,  3 : - - ~  

C2,  2 - -  

C2,  3 ~--- - -  ,'~ 

._~[ floq~ + 2o9oq~-] 
~ (2 - q~)flo ~ - ~  -SY , CL1 = -- 1 -- e~ q~ + qi J 

e~ 1 [  4(flokZ-o92)q~ + 2o9o(flo + 4kZ)q~] 
1 - E s 2  (qr-1)/3o q~ +q~  , 

1 
{2ogoqi +/30[(6 - 1)qr - 6 - 1]} 

2/7(T ° -- 1) 

l 
e-q'ln~'{[( 1 - -  q,)/3o - 2o9o (209o - qi)]cos(qi  In Y) 

2(T m - 1) 

+ [(2090 - q0flo + 2O9o(1 -- qr)]sin(q~ In 7)}, 

I 2090qr -- floqi 1 
E~ /~ 2O9O (fl0 -- 1) -- fl0 qi 2 2 , c2'1 -- 1 -- Cs 2 qr q- qi J 

1 esE s ~ [  (2 +qi)fl° 4(og°k2-f l°k2)qi+2og°(f l°+4k2)qr l q ~ + q ~  ' 

1 
{ -2°9o(1 + qr) + flo[(/~ - l)qi + 2/~09o]} 

2 g ( T  ° - 1) 

1 
e-qrln~{[(2og0 -- qi)/3o + 2O90(1 -- q~)]COS(qi In 7) 

2 (Tm-  1) 

--[(1 -- q~)/30 -- 2o90(2o90 -- q~)lsin(qi In 7)}, 

in which Y, q~ and qi are defined by 

T o -  1 

7 Tm__l ,  

or, equivalently, 

x/1 + 4(io9o + k 2) =_ q~ + iqi, 

[96] 

[97] 

[981 

[991 

[100] 

[101] 

[1021 

[1031 

[1041 

{qr} qi = 2 -  x / x / ( l  ÷ 4k2)2 + 16o9°2 -+ (1 + 4k2), [105] 

where the principal root has been taken in the definition [104]. 
It is readily seen that, for 7" = 0, the solution for the perturbation coefficient/31 is proportional 

to the factor es(1 - Es) -~, and that  it consists of  the sum of  two contributions fl~ and {*fl~ that 
represent variations in the location of  the neutral stability boundary  that are due to non-zero 
density and thermal conductivity ratios f and [, respectively. That  is, 

£s [fir + J~/P s] (Ys ~ = 0), [106] 
/3' = 1 

where plots of  fir(k; g) and fl~(k; g) are displayed in figure 3(a)-(d). Positive values of  these 
coefficients represent an upward, stabilizing shift in the neutral stability boundary  from its 
leading-order position shown in figure 2, while negative values represent a downward,  destabilizing 
shift. The magnitude of  these perturbations in the stability boundary,  whether positive or negative, 
is seen from [106] to increase with increasing values of  the porosity Es. In addition, there is a 
wavenumber dependence for each effect, with non-zero values of  [ being destabilizing for small 
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Figure 3(a)-(d). Neutral  stability per turbat ion coefficients as a function of wavenumber for (a)/~ = 1.0, 
(b) ~ = 0.75, (c) 6 = 0.5 and (d) 6 =  0.25. The cha in~lash  curve for/~r(k; 6) in each figure corresponds 
to the thermally expansive, quasi-steady gas-phase theory presented here. The dotted curve for this 
coefficient, which is generally located above the cha in~lash  curve, denotes the corresponding result for 

the case o f  a constant-density,  but  fully non-steady, gas phase (Margolis & Williams 1995b). 
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wavenumbers and stabilizing for large wavenumbers. The effect of non-zero values of •, while 
generally destabilizing, exhibits the opposite trend (increasing destabilization for increasing 
wavenumbers), consistent with the physical expectation that the gas-to-solid/liquid thermal 
diffusivity ratio of the gas to that of the condensed phases, which is equal to [/fff, should play a 
key role in determining the stabilizing or destabilizing influence of the gas phase. 

The curves for/~t are seen in figure 3(a)-(d) to be unchanged from those in Margolis & Williams 
(1995b), whereas those corresponding to/~r [the chain-dash curves in figure 3(a)-(d)] generally lie 
below the corresponding dotted curves that are obtained when thermal expansion of  the gas is 
neglected and full non-steadiness is allowed, particularly for low wavenumbers (the two corre- 
sponding expressions for ]~r approach the same common asymptote in the limit of large k). Thus, 
both approximations (ideal quasi-steady gas phase and constant-density, but fully non-steady, gas 
phase) predict the same qualitative trend with respect to thermal diffusivity. In particular, the effect 
of  larger gas-phase thermal diffusivities is stabilizing for short perturbation wavelengths, since the 
external transverse diffusive effect provided by the gas phase naturally tends to dampen such 
disturbances, which are produced by the diffusional/thermal instability associated with combustion 
of the condensed material. This effect diminishes and eventually reverses as the transverse 
disturbance wavelength increases and the effects of gas-phase diffusion in the negative normal 
direction to the perturbed front (toward the unburned material) become more significant than those 
associated with transverse diffusion. In connection with the latter, we note the following qualitative 
feedback mechanism, based on the "excess enthalpy" theory of pulsating flames. When the 
temperature at the front is perturbed in a positive sense, the reaction rate increases and the front 
accelerates. In the absence of gas-phase diffusion, the steepening temperature gradient ahead of the 
front then increases the heat flux away from the reaction zone, resulting in a deceleration of the 
front. As the reaction partially extinguishes, the process reverses so as to complete one cycle in the 
pulsating motion of  the front. When gas-phase diffusion is present and the temperature at the front 
is perturbed in a positive sense, diffusion of heat through the gas from the reaction front towards 
the porous preheat region also increases the local propagation velocity over what it would be if 
the only gas-phase transport process were that of convection (towards the burned gas). Thus, the 
effects of an enhanced reaction rate and those associated with gas-phase diffusion are positively 
coupled, thereby accounting for the destabilization mechanism as the stabilizing effect of transverse 
gas-phase diffusion becomes small. 

With respect to diffusional/thermal instability, the differences between a thermally expansive, 
quasi-steady gas phase relative to a constant density, fully nonsteady gas phase are confined to the 
downward (destabilizing) shift in the c u r v e  /~r(k) of the former relative to the latter, since the 
remaining curves are identical. In particular, there is now no stabilizing effect for small 
wavenumbers associated with non-zero values of  P and/~ of order unity [compare the curves for 
/~r in figure 3(a)-(d)]. However, we note that although the allowance for gas-phase thermal 
expansion is more realistic than the constant-density approximation for this phase, it seems 
plausible that the assumption of an instantaneously responsive (i.e. quasi-steady) response for the 
gas may result in some overstatement of this destabilizing effect. Indeed, if a quasi-steady 
approximation were also adopted for the previous constant-density model, the two sets of curves 
for fir would become identical. This follows from the fact that differences between the two 
asymptotic models are confined to additional time-derivative terms for the fully non-steady case, 
as can be seen from a comparison of [55] in the present work with the corresponding result [69] 
in Margolis & Williams (1995b). On the other hand, in assessing the role of gas-phase thermal 
expansion, a reasonable comparison of the two models would likely involve different values of 
(smaller values for the constant-density case) to compensate for the fact that f refers to the upstream 
gas density in the thermally expansive model, which is larger than some average value appropriate 
for a constant-density theory. Thus, since smaller values of ~ would correspond to a smaller 
destabilizing shift in the neutral stability boundary according to [93] and [106], we conclude that 
the additional destabilizing effect predicted by the quasi-steady, thermally expansive model (see 
figure 2) is associated with both thermal expansion and the quasi-steadiness of the gas phase. 

To complete our discussion, we now consider briefly the remaining curves in figure 3(a)-(d). In 
particular, for non-zero values of 7" ,  there is a third component 7*fi~ to the solution of fit that 
is independent of Es and, assuming an endothermic heat of melting (7* < 0), corresponds to the 
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effect of increasing the amount of heat released in the reaction zone by the amount of heat absorbed 
by the liquid that accompanies the phase change in the preheat region. That is, 

Es [fir + fi,/*l + fi~?*, [1071 
#'= 1 - E s  

where the influence of the first two terms is unchanged from above. The effect of melting can be 
stabilizing or destabilizing, and has been discussed previously. Endothermic melting tends to be 
destabilizing, especially for smaller, more typical values of b and larger wavenumbers. This trend 
may be attributed to the fact that the release of the heat of melting by the liquid-to-gas reaction 
serves to enhance the heat release in the highly temperature-sensitive reaction zone, and for 6 < 1, 
a greater proportion of this energy is absorbed by the reactive condensed phase relative to that 
absorbed by the non-reactive gas. A similar destabilizing result was predicted for low-temperature 
melting in gasless systems (Aldushin et al. 1987), although this effect diminishes and then reverses 
as the melting temperature increases such that melting occurs within the reaction zone itself 
(Margolis 1991). Here, too, the effect of increasing Tm (while keeping T O and all other parameters 
fixed) is found to be stabilizing, particularly for small wavenumber disturbances (Margolis & 
Williams 1995b). 

The final O(#) effect to be accounted for is due to the change in the stability parameter fl itself 
that accompanies any variation in the density ratio #. Although we have thus far adhered to a 
conventional definition of the Zel'dovich number as defined by [38], this parameter itself varies with 
# through changes in the burned temperature Tb. In particular, for small values of f, Tb decreases 
as f increases according to [86], thereby increasing the effective activation energy. Defining a 
modified Zel'dovich number r0 that does not vary with f according to 

l r y  

rio = (1 - ~b)N °, N O --/~L--2TO, [1081 

where T o is the leading-order burned temperature defined in [86], we calculate an additional 
correction -E~(1 - Cs) l f i ,  # in the position of the neutral stability boundary with respect to the new 
parameter rio, where fit = (1 - Z/T°)rio is shown in figure 3(a)-(d) for several values of T~, and rio(k) 
is the leading-order neutral stability boundary determined from [90]. That is, analogous to [93] and 
[107], 

ri°"~ rio + ~ fir+fit[* rb + fi~7* # + ' ' ' ,  [109] 

where fir(k), fit(k) and fir(k) are the same coefficients as those exhibited in figure 3(a)-(d). The 
above two-term approximation of rio is shown in figure 2 (chain~lash curves) for the same values 
of # as the leading-order approximation rio for typical values of the remaining parameters. Also 
shown in that figure are the corresponding (chain~lot) curves for the case of constant gas-phase 
density, which, while still indicating an overall destabilizing effect due to gas-phase influences, 
nonetheless lie above the modified stability boundaries that are obtained when thermal expansion 
of the gas is taken into account. From [109], it is clear that since the linearized correction to the 
leading-order result, due to non-zero values of the density and thermal conductivity ratios # and 
[, is proportional to E~ (1 - E s )  - t  , whereas the coefficient fir is independent of q (cf. [95], [100] and 
[103]), the overall effect of an increase in porosity is destabilizing with respect to steady, planar 
deflagration and that this effect is enhanced by gas-phase thermal expansion. 

9. SUMMARY 

The present analysis has extended the multiphase-flow theory developed in several previous 
works for the deflagration of porous energetic materials, such as degraded nitramine propellants, 
that undergo exothermic reactions in a liquid layer to produce gaseous products. The focus in this 
study, was, as in Margolis & Williams (1995b), on the investigation of the effects of non-zero 
porosity on the stability of steady, planar deflagration. This was facilitated by the derivation of 
an appropriate asymptotic model, valid in the limit of large overall activation energies, for the 
general case of non-steady, multidimensional propagation in an unconfined material. In the present 
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work this derivation proceeded under the assumption of a thermally expansive, quasi-steady gas 
phase, in contrast to the constant-density, fully non-steady gas phase that was assumed previously 
in Margolis & Williams (1995b). A basic solution corresponding to a steady, planar deflagration 
was then obtained explicitly, thereby allowing a linear stability analysis of this solution to be carried 
out in a standard fashion. It was determined, as in previous studies, that a pulsating stability 
boundary exists in the plane of activation energy and disturbance wavenumber, similar to that 
obtained in strictly condensed combustion (combustion synthesis) and in non-porous solid-propel- 
lant combustion. The neutral stability boundary was shown to be especially accessible for realistic 
parameter values that furthermore permit the effects of porosity on the location of this stability 
boundary to be handled in a perturbative fashion. Specifically, in the realistic limit of small 
gas-to-solid/liquid density and thermal conductivity ratios, it was shown that shifts in the stability 
boundary were proportional to Es(1- Es) -l. Positive (stabilizing) shifts were then shown to be 
realized for perturbations corresponding to sufficiently small transverse wavelengths owing to the 
smoothing effects of gas-phase thermal diffusion on what is essentially a condensed-phase 
instability. However, this transverse smoothing effect was shown to diminish with decreasing 
disturbance wavenumbers such that negative (destabilizing) shifts, associated with gas-phase 
diffusion normal to the reaction front, occur for sufficiently large transverse wavelengths. In 
addition, the lowering of the burned temperature as the porosity increases was shown to be 
destabilizing as well, since it serves to increase the effective activation energy. The effect of thermal 
expansion was shown to result in a destabilizing shift in the neutral stability boundary relative to 
the previous constant-density analysis, although it was speculated that the assumption of gas-phase 
quasi-steadiness may overstate the true effect. 
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